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The ability of certain pathogens, such as human immunodeficiency, hepatitis C, herpes simplex, influenza
viruses, Plasmodium falciparum, etc., to escape from host immune response is generally ascribed to high
mutation rate of their genome. We challenge this assumption and propose that molecular mimicry of
host antigens by these pathogens could also participate to this resistance. Several studies show that there
is no correlation between the mutation rate value of a pathogen and the possibility to develop an effective
vaccine. On the other hand, pathogens which do not respond to vaccine are usually reported to display
host protein mimicry.
We propose to suppress in the thymus the epitopes of the self which are in common with the pathogen.

This could be achieved by intrathymic injection of antibodies against this microorganism. These antibod-
ies would be obtained by vaccination of a foreign animal species. It is expected that the negative selection
of the CD4+ and CD8+ T lymphocytes specific for these epitopes would be prevented, that the number of
epitopes recognized as foreign to the host would be increased and that the immune response diversity
would be enhanced.

� 2015 Elsevier Ltd. All rights reserved.
Introduction

To date, no effective vaccine has been developed against human
immunodeficiency virus (HIV 1), Herpes simplex virus (HSV),
Hepatitis C virus (HCV) or Plasmodium falciparum. The vaccine
strains of influenza A virus have to be changed yearly to protect
against the ever evolving virus population. In contrast, vaccines
against most other RNA viruses (poliovirus, measles virus, Hepati-
tis A and B viruses, smallpox virus, etc.), which are based on strains
used for decades, show no loss of efficacy. A high rate of genetic
variation (mutations and recombinations) is generally suggested
to account for the escape of certain pathogens from host immune
response and to be the major obstacle to the development of effec-
tive vaccine [1]. However, this commonly accepted assumption is
at odds with the mutation rate data expressed per genome and
per duplication. Genetic variation alone does not explain resistance
of certain pathogens to vaccination. We suggest that this resistance
would be due to the combination of the mutations of the pathogen
genome and of the mimicry of the host proteins by a great part of
the pathogen epitopes.
Comparison of the mutation rates of pathogen organisms

The high mutation rates of RNA viruses are due to the deficien-
cies in the mechanisms of proofreading, leading to high error rate
of both the RNA dependent polymerase of the lytic viruses (ribo-
viruses) and the reverse transcriptase of the retroviruses. The
mutation rate values are scattered over a relatively large range,
due to non-standardized methods of measurement, and to experi-
mental and theoretical inadequacies. Indeed, the mutational tar-
gets studied are sometimes too small to be correct sampling of
the whole genome, or the process of replication is not known.
However, it seems that the RNA viruses have evolved so that their
mutation rates, expressed by the number of modifications per gen-
ome and per replication, have roughly similar values, varying over
an order of magnitude, approximately 0.8 for the riboviruses and
0.2 for the retroviruses [2]. The mutation rate of viral and cellular
microbes whose genetic information resides in DNA has been esti-
mated, with good accuracy and on a large range of molecular
weight, to 0.0034 per genome per replication. This value is far
lower than the mutation rate of RNA viruses [2], and thus cannot
account for an escape strategy. The mutation rates of eukaryotes
are around 0.01 when expressed per effective genome (fraction
of the genome in which most mutations are likely to have a
deleterious effect) and per replication [2]. Table 1 [1–21] shows
the rates of mutation measured for influenza A, human
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Table 1
Mutation rates per replication of some pathogens. ls: mutation rate per base pairs, G:
number of nucleotides, lG: mutation rate per genome.

Viruses Mutation rates

lS G lG Ref.

Influenza 13,558
4.5 10�5 [1]
1.5 10�5 0.203 [3]
>7.3 10�5 >0.99 [2,10]
7.1 10�6 0.092 [1]
3.9 10�5 0.52 [1,12]
2.3 10�5 [1,11]

Human immunodeficiency virus
1

9200
0.22 [2]

3 10�5 0.255 [6]
4.9 10�5 [1]
1 10�4 0.92 [1,9,13]
3.4 10�5 [14]
2.2 10�5 [15]
7.3 10�7 [16]

Hepatitis C 9600
1.2 10�4 [17]

Herpes simplex 152,000
0.003 [18]

5.9 10�8 [19]

Plasmodium falciparum <2.5 10�9 [20]

Polio 7440
<2.1 10�6 0.156 [3]

0.132 [4]
0.177 [4]

4.5 10�4 3.35 [7]
0.8 [2]

Measles 15,894
9 10�5 1.43 [5]

1.0 [4]

Hepatitis A 7500
1–10 10�4 0.75–7.5 [8]

Hepatitis B 3200
5.1 10�4 [21]
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immunodeficiency, polio, measles, hepatitis A, B and C, herpes sim-
plex viruses and P. falciparum. It can be seen that fluA, HCV and HIV
1, for which vaccines are either non-existent or ineffective, are not
distinguishable, on the basis of their mutation rates per genome
per replication, from the other examples (polio, measles and hep-
atitis A), against which highly effective vaccines have been
developed.

In the case of HSV, a DNA based virus, and of P. falciparum, par-
asite of the malaria, the low values of their mutation rates cannot
explain the escape from human immune response and the difficul-
ties encountered in the development of effective vaccine.

In other respects, the mutation rates measured per year in nat-
ural virus populations [22] cannot be compared with the mutation
rates per replication. A multitude of factors, such as the immune
pressure of the different hosts or prevailing ecological conditions
may have a larger impact on the genetic variability than the poly-
merase error rate itself.
Host protein mimicry by some pathogen organisms

In the case of pathogens against which no effective vaccines
have been developed, some proteins show sequence homologies
with those of the host. This phenomenon, called molecular mimi-
cry, allows these pathogens to evade host immune recognition,
by eluding it when the molecules of the immune system are mim-
icked, or by making some of their proteins indistinguishable from
those of the self. In addition, these pathogen antigens may induce
autoantibodies and trigger autoimmune diseases that damage host
tissues [23,24], when genetic, hormonal or environmental factors
are met [25].

� gp 41 of human immunodeficiency presents in its carboxy ter-
minus highly conserved homologous regions with the
aminoterminal part of the b chain of all human HLA class II anti-
gens [26]. Mimicry by gp 41 of proteins of astrocytes in human
brain tissue is a probable cause of autoimmune pathogenesis
[27]. Autoantibodies cross-reacting with this trans membrane
protein and human IL2 [28] or human platelet glycoprotein gp
IIIa (integrin b3) [29] have been found in sera of HIV 1 infected
individuals. HIV 1 gp 41 shares also regions of homology with
complement factor H [30] and membrane proteins of human
T, B and monocyte cells [31]. Production of cross-reactive anti-
bodies between HIV 1 gp 120 and platelet glycoproteins gp IIb/
gp IIIa [32], human T cell proteins [33–35] and human brain
proteins [36] have been ascribed to molecular mimicry. Similar
aminoacid sequence motifs have been found on gp 120 and on
the antigen recognition site of most HLA class I C [37] or on the
CD4 binding site of the class II major histocompatibility com-
plex proteins [38]. Molecular mimicry between an epitope of
nef, protein encoded by the HIV 1 genome, and the glycoprotein
IIIa has been reported [39]. More recently, high sequence simi-
larity was found between EL9 epitope and the human nucleolar
protein 6 (NOL6) [40], extensive viral mimicry of 22 AIDS
related autoantigens by HIV 1 proteins was noted [41] and
exclusion of HIV epitopes shared with human proteins was rec-
ognized as prerequisite for designing safer AIDS vaccines [42].

� The N-terminal region of the viral glycoprotein E2 of the Hepati-
tis C virus is antigenical and structurally similar to human
immunoglobulin variable domains, the degree of similarity to
immunoglobulin types being correlated with the virus immune
escape and persistence in humans [43]. Homologies between
the non-structural 5 (NS5) region of HCV and the human pro-
tein nitrogen oxide synthases type III have been reported [44].
Similarities between NS3 and NS5A HCV proteins and cyto-
chrome P450 2D6 have been ascribed to be the cause of anti
liver–kidney microsome type 1 autoantibodies [45]. HCV core
178–187 shows also sequence homology with cytochrome
and may lead to autoreactive CD8+ CTLs by molecular mimicry
[46]. In chronic HCV infections, autoantibodies to smooth mus-
cles and nuclear components may arise as a consequence of
molecular mimicry [47]. In contrast, according to other authors,
the high rate of variability of the hypervariable region 1 of the
virus envelope protein E2 would play a major role in the mech-
anism of escape from host immune response and would repre-
sent a major obstacle to developing an HCV vaccine [48]. To
date, the link between HCV and autoreactivity is tentatively
explained on the basis of sequence homologies shared by the
HCV polyprotein and the ‘‘self” proteins (such as CYP2D6, target
of anti LKM1) [49].

� Influenza A virus mimics cytoplastic dynein, and an anti-virus
antibody is used to localize this protein in the central nervous
system [50]. A CD4+ T-cell clone, specific for an immunodomi-
nant influenza hemagglutinin peptide, cross-reacts with a
human myelin derived peptide [51]. Antibodies formed after
influenza A or hepatitis C virus infections react with antigenic
targets present on platelets and induce idiopathic thrombocy-
topenic purpura [52]. Human autoantibodies from patients with
systemic rheumatic disease recognize epitopes shared by influ-
enza B virus and by p68 associated with small nuclear ribonu-
cleoprotein particles [53]. Molecular mimicry is also suspected
to be the cause of the Guillain Barre syndrome by an inactivated
flu vaccine [54].
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� Following molecular mimicry of host proteins by Herpes sim-
plex virus, a DNA based virus, have been reported: the chemo-
kine receptors [55], interleukin 6 [56], CD200, a protein
implicated in preventing macrophage activation [57], a cell sur-
face glycoprotein expressed on monocytes, macrophages and
platelets [58], the acetylcholine receptor [59,60], the myelin
basic protein [61] and the human intermediate filament protein
[62]. Autoimmune diseases such as myasthenia gravis or multi-
ple sclerosis are sometimes associated with the presence of this
virus and ascribed to host protein mimicry by the pathogen.

� Some proteins of P. falciparum, (pathogen of malaria), present
similarities with human homologs: the translationally con-
trolled tumor protein (TCTP), the parasite protein called RESA,
the antigen that mediates erythrocyte invasion, show respec-
tively similarities with the mammalian histamine-releasing fac-
tor [63], the ovalocyte band 3 protein [64], and the interleukin 8
receptor as well as the macrophage inflammatory protein 1a/
RANTES receptor [65]. A common binding motif displaying
homology to muscle myosin and neurofilament sequences
was also identified [66]. Sequence homologies between parasite
and human proteins, due to molecular mimicry, can cause
autoimmune responses [23].

Interestingly, this strategy is rarely reported regarding RNA
viruses which respond to vaccine: there is no data concerning
mumps or rabies viruses. No evidence has been found that measles,
mumps and rubella vaccination during adolescence might trigger
autoimmunity [67] and no measles virus specific CD4+ T cell
showed any reactivity to myelin basic protein [68], however, there
is cross-reaction between the phosphoprotein of this virus and an
intermediate filament protein of human cells, probably vimentin
[62]. Molecular mimicry between viral and host epitopes has been
suspected in progressive rubella panencephalitis [69], and demon-
strated in autoimmune demyelination, due to homology with mye-
lin oligodendrocyte glycoprotein [70]. Sequence similarities have
been found between poliovirus receptor and myelin P0, a major
Fig. 1. Influence of mutations on the efficiency of the immune response. The epitope sets
its epitopes (small circle) with the host (large circle). Few antibodies would be produced
gray). (b) When many pathogen epitopes are foreign to the host, multiple antibodies wou
(in gray).
peripheral nerve protein [71]. More data are related to mimicry
of host proteins and autoimmune diseases by hepatitis A [72]
and B viruses, but several of them conclude to an absence of causal
link. No correlation seems to exist between hepatitis B vaccination
and multiple sclerosis [73,74], this disease being probably due to
contamination with hepatitis B polymerase [75]. No evidence of
autoimmunity has been found among 6-year-old children immu-
nized at birth with hepatitis B vaccine [76]. On the other hand,
mimicry was suspected to be responsible for multiphasic dissemi-
nated encephalomyelitis in a patient infected by hepatitis A virus
[77] and in another one, for demyelinating transverse myelitis by
hepatitis B virus [78]. Aminoacid sequences similarities have been
observed between virus B polymerase and myelin basic protein
[79] or nuclear and smooth muscle proteins [80], and also between
small hepatitis B virus surface antigen and myelin oligodendrocyte
glycoprotein [81]. An antigenic mimicry of an immunoglobulin A
epitope was found in a hepatitis B virus cell attachment site [82]
and the hepatitis B virus preS1 domain hijacks host trafficking pro-
teins by motif mimicry [83].

Finally, it seems that host protein mimicry by pathogen is less
frequently reported when there is an effective vaccine against it,
than when there is not.
Proposition of treatment

On Fig. 1, the sets of the antigen epitopes of the different species
are represented by the points of the surface of circles. The immune
system reacts against the pathogen epitopes which are foreign to
the host (which are not included into the host epitope set). When
a large proportion of the antigens of a microorganism is shared
with the host, only a small number of epitopes can be recognized
as foreign by the immune system (Fig. 1a). Some mutations may
then shift the virus epitope set and a fraction of antibodies pro-
duced by previous infections or vaccination may be inactive
against the mutated epitopes. In these conditions, the combined
are represented by the points of the area of circles. (a) The pathogen shares most of
and a small fraction of them would remain active against the mutated pathogen (in
ld be produced and a sufficient part of them would react with the mutated pathogen



Fig. 2. Proposition to improve the immune response. The epitope sets are represented by the points of the area of circles. (a) The pathogen shares most of its epitopes (small
circle) with the host (large circle). Only the small subset outside the human epitope set would give rise to antibodies (in gray). (b) The animal species epitope set (thick lined
circle) is different from the human epitope set and more pathogen epitopes would elicit antibodies (in gray). They are purified by affinity and injected into the thymus of the
patient. (c) The negative selection of the CD4+ and CD8+ lymphocytes specific of the blocked epitopes would be prevented and a greater number of pathogen epitopes would
be recognized as foreign and would induce an immune response (in gray).
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effects of host epitope mimicry and mutations would impede the
development of an effective vaccine. In case of moderate level of
mimicry, the number of mutations being the same, the effect of
mutation rate would be reduced as the number of foreign epitopes
would be larger (Fig. 1b). It is probably the case for the pathogens
against which effective vaccines have been developed, or after the
treatment we propose.

The aim of this treatment is to increase the number of patho-
gen epitopes foreign to the host, in order to enhance the immune
response. For this purpose, we have previously proposed [84] to
suppress, in the thymus, the part of the epitopes of the self which
is in common with the microorganism. Theoretically, this could
be achieved by intrathymic injection of antibodies against this
pathogen, obtained by vaccination of an animal species. In this
way, it is expected that the negative selection of the CD4+ and
CD8+ T lymphocytes specific for these epitopes would be pre-
vented and that the diversity of the immune response would be
enhanced.

The animal species chosen for the production of antibodies
must have an epitope set as different as possible from that of the
pathogen (Fig. 2b). These polyclonal antibodies could be purified
by affinity chromatography, with the microorganism proteins
bound to the matrix of the column. By injecting these antibodies
into the thymus, the corresponding subset of the human self epi-
topes would be blocked, the negative selection of the specific T
lymphocytes would be prevented and a greater number of patho-
gen epitopes would be recognized as foreign by the host immune
system (Fig. 2c). Thereby, it is expected that antibodies against
many pathogen epitopes, not modified by mutation, would be pro-
duced after vaccination. The injection of antibodies ought to be
performed into the medullary portion of the thymus, where nega-
tive selection takes place, while positive selection is controlled in
the cortex [85]. This operation is certainly difficult, but, even if
the fixation of antibodies on epitopes of the self is randomly dis-
tributed between the compartments, some thymocytes may
undergo positive selection by contact with cortical cells not altered
by the antibodies. Then, by moving to the next medulla which has
received antibodies, they could escape to the negative selection
and appear as CD4+ and CD8+ mature cells.
Discussion

Experimental intrathymic injections of antigens of all kinds (MHC
I or MHC II peptides, cell extracts, bone marrow, splenocytes, islet
cells) have been shown to prevent graft rejection, by a mechanism
involving the clonal deletion of certain allo and xenoreactive T cells
in the thymus [86–89]. On the other hand, blocking antigenic epi-
topes in the thymus by antibody treatment is possible. In mice
injected intraperitoneally, from birth, with antibodies to MHC
(class I or II), the development of mature cells of the corresponding
specificity is clearly modified [90]. Administration in the same way
of anti CD4 monoclonal antibodies differentially affects the
intrathymic development of T cell populations [91]. However, sur-
prisingly, intrathymic injection of antibodies, as we propose, has not
been reported up to now.

This treatment is not exactly a passive immunotherapy, since
only the thymus is involved. As the organ is involuted in adults
and abnormal in certain diseases such as AIDS [92], one may think
that the treatment could not be always applied. However, in the
case of young people, it would be easy, and as recent data suggests,
the adult thymus can still contribute to cell reconstitution [93].

The choice of the animal species for the antibody production is
particularly important: it must be immunologically distant from
humans, in order to induce different antibodies against the patho-
gen, but not too much, to avoid important immune response
against them. It is also necessary to choose animals of great size,
to obtain sufficient amounts of material. After the end of the treat-
ment, the human circulating antibodies might replace the injected
xenoantibodies from their binding sites in the thymus. A constant
surveillance of the titer of the antibodies should be ensured over an
effective time frame.

After the proposed treatment, the major part of the antibodies
produced by the host in previous immunization would remain
active against a pathogen having undergone some mutations,
while, without this treatment, they would be inactive towards a
mutated pathogen sharing a large proportion of its epitopes with
the host. By restricting the number of foreign epitopes, molecular
mimicry combined with the mutation of the genome are certainly
a more efficient mechanism to escape the immune response than
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mutability alone. It is probably the major obstacle to the develop-
ment of some vaccines.

Besides adverse immunological response to allo and xenopro-
teins (such as urticaria), repeated injections of antibodies may
induce the formation of antiidiotypic antibodies. As they bear an
internal image of the pathogen epitopes, they could compete with
them, displace the injected xenoantibodies from their complexes
with the self epitopes in the thymus. However, in the case of dan-
gerous infections and in the absence of an effective vaccine, these
drawbacks would be negligible.

On the other hand, blocking with antibodies the epitopes, in the
thymus, common to the self and to the pathogen, could modify the
production of the autoantibodies responsible of the autoimmune
diseases. This issue requires further study.

Finally, the validity of these propositions can be readily evalu-
ated using the appropriate animal model, since the purification
of polyclonal antibodies and their injection into the thymus are
possible.
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